Cartilage thickness: factors influencing multidetector CT measurements in a phantom study.

نویسندگان

  • Andrew E Anderson
  • Benjamin J Ellis
  • Christopher L Peters
  • Jeffrey A Weiss
چکیده

PURPOSE To prospectively assess in a phantom the reconstruction errors and detection limits of cartilage thickness measurements obtained with multidetector computed tomographic (CT) arthrography, as a function of contrast agent concentration, scanning direction, spatial resolution, joint spacing, and tube current, with known measurements as the reference standard. MATERIALS AND METHODS A phantom with nine chambers was constructed. Each chamber had a nylon cylinder encased by sleeves of aluminum and polycarbonate to simulate trabecular bone, cortical bone, and cartilage. Varying simulated cartilage thicknesses and 10 joint space widths were assessed. On 3 days, the phantom was scanned with and without contrast agent administration and with the chamber axes both perpendicular and parallel to the scanner axis. Images were reconstructed at 1.0- and 0.5-mm intervals. Contrast agent concentration and tube current were varied. The simulated cartilage thickness was determined by using image segmentation. Root mean squared errors and mean residual errors were used to characterize the measurements. The reproducibility of the CT scanner and image segmentation results was determined. RESULTS Simulated cartilage greater than 1.0 mm in thickness was reconstructed with less than 10% error when either no contrast agent or a low concentration (25%) of contrast agent was used. Error increased as contrast agent concentration increased. Decreasing the simulated joint space width to 0.5 mm caused slight increases in error; however, error increased substantially at joint spaces narrower than 0.5 mm. Errors in measurements derived from anisotropic CT data were greater than errors in measurements derived from isotropic data. Altering the tube current did not substantially affect reconstruction errors. CONCLUSION The study revealed lower boundaries and the repeatability of simulated cartilage thickness measurements obtained by using multidetector CT arthrography and yielded data pertinent to choosing the contrast agent concentration, joint space width, scanning direction, and spatial resolution to reduce reconstruction errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Morphology of the Hyoid Bone According to Age and Gender With Multidetector Computarized Tomography

Introduction: In our study, we aimed 200 cases were evaluated for the length, width and angle of hyoid bone and its distance from certain anatomical structures. Methods: This study was perfomed retrospectively in 2010 - 2013 on 200 CT images. 3D volume rendering images of pure hyoid bone were created from the axial CT images in 1 mm slice thickness. In our study, 200 cases (94 female, 106 male...

متن کامل

Design and manufacturing a CTDI pediatric phantom for CT dosimetry using TLD, ion chambers, and gel dosimetry

Introduction: Nowadays, the demand for CT-scan is increased, and this issue has become a critical subject in radiation protection, because of the risk of cancer especially for children. The quality assurance of CT images is a necessary factor that can effect on children dose. The CT dose index is an important dosimetry index in CT-Scan dosimetry. The purpose of this study is t...

متن کامل

Validation of cartilage thickness calculations using indentation analysis.

Different methods have been used to cross-validate cartilage thickness measurements from magnetic resonance images (MRIs); however, a majority of these methods rely on interpolated data points, regional mean and/or maximal thickness, or surface mean thickness for data analysis. Furthermore, the accuracy of MRI cartilage thickness measurements from commercially available software packages has no...

متن کامل

Fabrication of anthropomorphic phantoms for use in total body photon irradiation and total skin electron irradiation studies

Introduction: Total Skin Electron Therapy (TSET) and Total Body Irradiation (TBI) are kinds of treatment which use electron and photon beams to treat special types of cancers. The aim of these techniques are to deliver uniform dose to the entire skin while minimizing delivered dose to organs at risk. To check the homogeneity of dose delivery in TBI and TSET, using a humanoid ph...

متن کامل

Design and Fabrication Process of MTF Phantom CT Scan

Introduction: One of the main steps in the optimization process in diagnostic imaging is the quality control of radiology devices. The usual method of CT scan calibration is used of a phantom. The phantom created a certain weakening for the radiation through which it passes. One of the most suitable methods for quantitative analysis of the resolution and contrast in CT scan im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiology

دوره 246 1  شماره 

صفحات  -

تاریخ انتشار 2008